- [6] Reviews: a) H. P. Boehm, Carbon 1994, 32, 759 769; b) H. P. Boehm, Angew. Chem. 1966, 78, 617 628; Angew. Chem. Int. Ed. Engl. 1966, 5, 533 544; c) H. P. Boehm, E. Diehl, W. Heck, R. Sappok, Angew. Chem. 1964, 76, 742 751; Angew. Chem. Int. Ed. Engl. 1964, 3, 669 677.
- [7] a) J. A. Menéndez, D. Suárez, E. Fuente, M. A. Montes-Morán, Carbon 1999, 37, 1002 – 1006; b) D. Suárez, J. A. Menéndez, E. Fuente, M. A. Montes-Morán, Langmuir 1999, 15, 3897 – 3904.
- [8] a) E. L. Hunter, S. G. Lias, J. Phys. Chem. Ref. Data 1998, 27, 413-656; b) S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, J. Phys. Chem. Ref. Data. 1988, 17(S1), 1-861; c) NIST Chemistry Webbook (Eds.: W. G. Mallard, P. J. Linstrom), NIST Standard Reference Database No. 69, March 1998; National Institute of Standards and Technology, Gaithersburg, MD 20899 (http:// webbook.nist.gov).
- [9] B. J. Smith, L. Radom, J. Phys. Chem. 1995, 99, 6468-6471.
- [10] a) Z. B. Maksic, B. Kovacevic, J. Phys. Chem. A 1998, 102, 7324 7328;
 b) B. Kovacevic, Z. B. Maksic, Chem. Phys. Lett. 1998, 288, 289 292.
- [11] a) S. T. Howard, J. A. Platts, J. Org. Chem. 1998, 63, 3568-3571; b) M. Perakyla, J. Org. Chem. 1996, 61, 7420-7425.
- [12] a) P. R. Mallinson, K. Wozniak, C. C. Wilson, K. L. McCormack, D. S. Yufit, J. Am. Chem. Soc. 1999, 121, 4640-4646; b) A. Szemik-Hojniak, J. M. Zwier, W. J. Buma, R. Bursi, J. H. van der Waals, J. Am. Chem. Soc. 1998, 120, 4840-4844; c) C. López, P. Lorente, R. M. Claramunt, J. Marín, C. Foces-Foces, A. L. Llamas-Saiz, J. Elguero, H.-H. Limbach, Ber. Bunsen-Ges. Phys. Chem. 1998, 102, 414-418; d) P. R. Mallinson, K. Wozniak, G. T. Smith, K. L. McCormack, J. Am. Chem. Soc. 1997, 119, 11502-11509.
- [13] W. J. Hehre, L. Radom, J. A. Pople, P. von R. Schleyer, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
- [14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian 94, Gaussian, Inc., Pittsburgh, PA, 1995.

Enantioselective β-Amino Acid Synthesis Based on Catalyzed Asymmetric Acyl Halide – Aldehyde Cyclocondensation Reactions**

Scott G. Nelson* and Keith L. Spencer

Optically active β -amino acids have become increasingly prevalent features in small-molecule chemotherapeutic agents^[1] and are integral components of peptidic materials that have unique structural properties.^[2] As a result, efficient and economical preparation of enantiomerically enriched β -

- [*] Prof. S. G. Nelson, K. L. Spencer Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260 (USA) Fax: (+1)412-624-8611 E-mail: sgnelson + @pitt.edu
- [**] The National Science Foundation (CHE-9875735) and the University of Pittsburgh are gratefully acknowledged for support of this work. We thank Prof. Peter Wipf for helpful discussions during the preparation of this manuscript.
- Supporting information for this article is available on the WWW under http://www.wiley-vch.de/home/angewandte/ or from the author.

amino acids has become the focus of numerous synthesis studies.^[3, 4] The amine-mediated S_N2 ring opening of β -lactones presents an especially attractive and straightforward entry to compounds that contain β -amino carbonyl functionalities [Eq. (1)].^[5, 6] However, the evolution of this strategy as

AcBr, R'₃N

Chiral catalyst

$$R'_3(H)N \bullet Br$$

AcBr, R'₃N

 $N(H)R''$
 $N(H)R''$
 $N(H)R''$
 $N(H)R$
 $N(H)R$

a general asymmetric synthesis of β -amino acids has been limited by the availability of the requisite optically active β -lactone electrophiles. Herein we describe the union of catalytic asymmetric acyl halide—aldehyde cyclocondensation reactions with azide- or sulfonamide-anion-mediated ring opening of the derived enantiomerically enriched β -lactones as an economical and efficient asymmetric synthesis of N-protected β -amino acids.

Catalyzed enantioselective acyl halide—aldehyde cyclocondensation (AAC) reactions have recently been reported to provide convenient access to β -lactones with high enantiomeric purities [Eq. (2)].^[8] We envisioned that integrating the

catalytic asymmetric AAC reaction technology with the reactivity of nitrogen-based nucleophiles toward β -lactones would represent a general asymmetric synthesis of β -amino acid derivatives. Thus, a series of enantiomerically enriched β -lactones **1** were prepared by the asymmetric cyclocondensation of acetyl bromide and a variety of aldehyde electrophiles **2** catalyzed by the Al^{III} triamine complex **3** (Table 1). Based on pioneering observations by the groups of Vederas and Seebach, [5a-c] azide ion was evaluated initially as a suitable nucleophile for effecting the desired $S_N 2$ mode of 2-oxetanone ring opening. Reacting the optically active β -lactones **1a**-**f** with sodium azide (2.0 equiv) in DMSO (50 °C) promoted efficient $S_N 2$ lactone ring opening to directly afford the β -azido acids **4a**-**f** in 78-95 % yield [Eq. (3)]. [9] Azide-induced

ring opening was insensitive to the structure of the lactone alkyl substituent; lactones bearing aliphatic unbranched, alkoxy-substituted, α -branched, [10] and β -branched alkyl sub-

Table 1. Asymmetric catalyzed AAC and azide-mediated ring-opening reactions.

Entry	Aldehyde 2 (R)	ee [%] (1) ^[a] (Yield [%])	Yield [%] (4) ^[b] (Config.)	ee [%] (4)
1	a (BnOCH ₂)	91 (88)	94 (R)	92 ^[c]
2	b (PhCH ₂ CH ₂)	97 (96)	95 (S)	93 ^[c]
3	c (Me ₂ CHCH ₂)	95 (95)	95 (S)	97 ^[d]
4	d (CH ₃ CH ₂ CH ₂)	96 (95)	78 (S)	
5	e (CH ₃ (CH ₂) ₃)	97 (80)	83 (S)	
6	\mathbf{f} (CH ₂ CH(CH ₂) ₈)	94 (96)	87 (S)	
7	$\mathbf{g} \left(c \mathbf{C}_6 \mathbf{H}_{11} \right)$	99 (48) ^[e]	93 (R)	

[a] Lactones 1 were prepared and assayed by using the procedures described in ref. [8a] (except lactone 1g). [b] Reported yields are for compounds obtained from the acid-base extractive workup of the azide ring-opening reactions. [c] Enantiomer ratio deteremined by chiral-phase HPLC (Chiralcel OD-H column) of the corresponding methyl ester. [d] Enantiomer ratio deteremined by chiral-phase HPLC (Chiralcel OD-H column) of the corresponding benzyl ester. [e] Lactone 1g was obtained by the resolution procedure described in ref. [10a].

stituents are subject to efficient lactone ring opening with the anticipated inversion of configuration (Table 1). Product isolation and purification was facilitated by acid-base partitioning of the β -azido acid reaction products; the β -azido acids typically emerge from the extractive workup in >95% purity. [12]

The optically active β -azido acids **4** can be further derivatized or protected to correctly format the carboxylic acid and amino functions for subsequent transformations. Upon converting the azido acids **4b-d** to the corresponding methyl esters **5b-d** (CH₂N₂, Et₂O), transforming the azide residue to the carbamate-protected amine was achieved by catalyzed hydrogenolysis of the β -azido esters **5b-d** in the presence of di-*tert*-butyl dicarbonate (Boc₂O) to afford the *N*-Boc-protected β -amino acid derivatives **6b-d** in 87-99% yield [Eq. (4)]. [13] The free β -amino acid salts **7c**, **e**, **g** were

obtained in 79–87 % yield by Pd⁰-catalyzed hydrogenolysis of the β -azido acids **4c**, **e**, **g** [Eq. (5)]. Note that the optically active β -azido acids emerge from the lactone ring-opening reaction appropriately derivatized for direct coupling at the carboxylate terminus, while the acid protection – azide reduction sequence formats the resulting β -amino esters for amidebond construction at the nitrogen terminus.

In anticipation of the demands that multistep synthesis applications might place on the β -amino acid derivatives emerging from this procedure, we were interested in developing methods for directly installing the protected β -amine

function in the correct oxidation state. Ring opening of optically active β -lactones with stabilized amine anions would afford an asymmetric synthesis of β -amino acids in which the nitrogen function would be directly introduced bearing an electron-withdrawing protecting group. Sulfonamide anions were expected to possess the correct electronic properties to allow $S_N 2$ β -lactone ring opening to predominate relative to the alternative ring-opening pathway involving nucleophilic attack at the lactone carbonyl group. [14] Accordingly, the anion derived from o-nitrobenzenesulfonamide was selected as a suitable nitrogen nucleophile based on the utility of nosylate (o-nitrobenzenesulfonyl, oNs) groups as easily removable nitrogen protecting groups [Eq. (6)]. [15] Reacting the enan-

tiomerically enriched β -lactones $\mathbf{1a-c}$, \mathbf{f} with the sodium salt of o-nitrobenzenesulfonamide in DMSO (50 °C) afforded the N-protected β -amino acids $\mathbf{8a-c}$, \mathbf{f} in good yields (64–83 %) accompanied by little (\leq 10 %) to none of the imide product arising from carbonyl addition (Table 2). [16] Steric bulk

Table 2. Sulfonamide-anion-mediated lactone ring opening.

Entry	Lactone 1 (R)	Yield [%] (8) ^[a] (Config.)	ee [%] (8) ^[b] (ee [%] (1))
1	a (BnOCH ₂)	64 (R)	
2	b (PhCH ₂ CH ₂)	72 (S)	\geq 95 (97)
3	c (Me ₂ CHCH ₂)	74 (S)	93 (95)
4	\mathbf{f} (CH ₂ CH(CH ₂) ₈)	83 (S)	
5	$\mathbf{g}\left(c\mathbf{C}_{6}\mathbf{H}_{11}\right)$	43 (R)[c]	≥95 (99)

[a] Reported values are for chromatographically purified compounds. [b] Enantiomer ratios deteremined by ^{1}H NMR analysis of corresponding (S)- α -methoxyphenylacetamides; see ref. [16]. [c] 38% of regioisomer formed.

adjacent to the electrophilic carbon atom, however, alters the regioselectivity of nucleophilic addition to the β -lactones; sulfonamide anion addition to the cyclohexyl-substituted lactone 1g suffers from significant competition between the S_N2 and carbonyl addition reaction pathways (Table 2, entry 5). [17] In this regard, the azide-mediated ring-opening reactions that do not exhibit substrate-dependent regioselectivity represent attractive complements to sulfonamide anion addition reactions. Since o-nitrobenzenesulfonyl-protected nitrogen functionalities are conveniently unmasked with thiolate ion, this procedure constitutes a convenient two-step synthesis of versatile N-protected β -amino acids. [18]

The asymmetric AAC-amine ring-opening sequence provides an operationally simple and economical enantioselective synthesis of β -amino acid derivatives. The availability of either enantiomer of the cyclocondensation catalyst 3 affords convenient access to β -amino acids in either enantiomeric series.

Experimental Section

General procedure for S_N2 addition of NaN_3 to β -lactones 1: To a solution of NaN_3 (72 mg, 2.0 mmol, 2.0 equiv) in anhydrous DMSO (3.4 mL) at 50 °C was added β -lactone 1 (176 mg, 1.0 mmol, final concentration 0.3 m) by syringe. The resulting homogeneous solution was stirred until all the lactone had been consumed as monitored by TLC (ca. 6 h). After the reaction mixture had been cooled to ambient temperature, saturated aqueous $NaHCO_3$ (3 mL) was added. The resulting heterogeneous mixture was triturated with water until all the precipitated salts dissolved. The resulting mixture was extracted with ethyl acetate (2 × 5 mL) and the aqueous layer was exparated and acidified with 1m HCl. The acidic aqueous layer was extracted with ethyl acetate (3 × 5 mL) and the combined organic portions were washed with water (2 × 5 mL) and brine (2 × 5 mL). The organic portion was dried (Na_2SO_4) and evaporated in vacuo to afford the β -azido acid 4.

General procedure for S_N2 addition of o-nitrobenzenesulfonamide (monosodium salt) to β -lactones 1: To a suspension of o-nitrobenzenesulfonamide (monosodium salt; 700 mg, 3.13 mmol, 2.0 equiv) and activated powdered 4 Å molecular sieves (200 mg) in anhydrous DMSO (5.2 mL, in lactone) at 50 °C was added β-lactone **1** (200 mg, 1.56 mmol, final concentration 0.3 м) by syringe. The resulting suspension was stirred until all the lactone had been consumed as monitored by TLC (ca. 5 h). After the reaction mixture had been cooled to ambient temperature, 1M aqueous HCl (5 mL) was added and the resulting mixture was extracted with ethyl acetate (3 \times 5 mL). The combined organic extracts were washed with water (2 × 5 mL) and brine (2 × 5 mL). The organic layer was separated, dried (Na2SO4), and concentrated in vacuo to afford a yellow solid. The solid was triturated with chloroform and the insoluble material (o-nitrobenzenesulfonamide) removed by filtration. The filtrate was concentrated in vacuo to afford the crude β -sulfonamido acid. The crude acid was dissolved in ethyl acetate and a solution of CH2N2 in diethyl ether was added until a yellow color persisted. Glacial acetic acid was added to decolorize the reaction mixture and the volatiles were evaporated in vacuo to afford the β sulfonamido ester 8 as a yellow oil that was purified by column chromatography (hexanes/ethyl acetate, 65:35).

Received: October 15, 1999 [Z14153]

- E. Juaristi, Enantioselective Synthesis of β-Amino Acids, WILEY-VCH, Weinheim, 1997.
- [2] Reviews of β-peptide synthesis and structure:a) T. Hintermann, D. Seebach, Chimia 1997, 50, 244–247; b) D. Seebach, J. L. Matthews, Chem. Commun. 1997, 2015–2022; c) U. Koert, Angew. Chem. 1997, 107, 1922–1923; Angew. Chem. Int. Ed. Engl. 1997, 36, 1836–1837; d) S. H. Gellman, Acc. Chem. Res. 1998, 31, 173–180.
- [3] Asymmetric β-amino acid synthesis employing optically active starting materials or chiral auxiliaries: a) Reference [1]; b) E. Juaristi, D. Quintana, J. Escalante, Aldrichim. Acta 1994, 27, 3; c) D. C. Cole, Tetrahedron 1994, 50, 9517 9582; d) G. Cardillo, C. Tomasini, Chem. Soc. Rev. 1996, 25, 117 128; see also: e) D. Enders, W. Bettray, G. Raabe, J. Runsink, Synthesis 1994, 1322 1326; f) D. Enders, H. Wahl, W. Bettray, Angew. Chem. 1995, 107, 527 529; Angew. Chem. Int. Ed. Engl. 1995, 34, 455 457; g) J. Podlech, D. Seebach, Liebigs Ann. 1995, 1217 1228; h) C. Guibourdenche, J. Podlech, D. Seebach, Liebigs Ann. 1996, 1121 1129, and references therein; i) Y. Yamamoto, N. Asgo, W. Tsukada in Advances in Asymmetric Synthesis (Ed.: A. Hassner), JAI Press, Stamford, 1998, p. 1, and references therein.
- [4] Recent catalytic asymmetric syntheses of β-amino acid derivatives:
 a) L. Falborg, K. A. Jørgensen, J. Chem. Soc. Perkin Trans. 1 1996,
 2823 2826;
 b) S. Kobayashi, H. Ishitani, M. Ueno, J. Am. Chem. Soc.
 1998, 120, 431 432;
 c) M. P. Sibi, J. J. Shay, M. Liu, C. P. Jasperse, J. Am. Chem. Soc. 1998, 120, 6615 6616;
 d) F. Zhou, M. R. Detty, R. J.

- Lachicotte, *Tetrahedron Lett.* **1999**, *40*, 585 588; e) J. K. Meyers, E. N. Jacobsen, *J. Am. Chem. Soc.* **1999**, *121*, 8959 8960.
- [5] a) L. D. Arnold, T. H. Kalantar, J. C. Vederas, J. Am. Chem. Soc. 1985, 107, 7105-7109; b) A. Griesbeck, D. Seebach, Helv. Chim. Acta 1987, 70, 1326-1332; c) L. D. Arnold, R. G. May, J. C. Vederas, J. Am. Chem. Soc. 1988, 110, 2237-2241; d) R. Castagnani, F. De Angelis, E. De Fusco, F. Giannessi, D. Misiti, D. Meloni, M. O. Tinti, J. Org. Chem. 1995, 60, 8318-8319; e) I. Bernabei, R. Castagnani, F. De Angelis, E. De Fusco, F. Giannessi, D. Misiti, S. Muck, N. Scafetta, M. O. Tinti, Chem. Eur. J. 1996, 2, 826-831.
- [6] An alternative approach to β-amino acid derivatives derived from β-lactones: H. W. Yang, D. Romo, J. Org. Chem. 1999, 64, 7657 7660.
- [7] Recent developments in asymmetric β-lactone synthesis: H. W. Yang,
 D. Romo, Tetrahedron 1999, 55, 6403 6434.
- [8] a) S. G. Nelson, T. J. Peelen, Z. Wan, J. Am. Chem. Soc. 1999, 121, 9742-9743; b) S. G. Nelson, Z. Wan, T. J. Peelen, K. L. Spencer, Tetrahedron Lett. 1999, 40, 6535-6540.
- [9] Acidic workup of the dimethyl sulfoxide reaction solutions should remove any remaining azide reagent by conversion to the sulfoximine, see: C. R. Johnson, P. E. Rogers, J. Org. Chem. 1973, 38, 1793 – 1797.
- [10] β-Lactones possessing α-branched substituents are not obtained in sufficiently high enantioselectivities from the catalyzed AAC reactions to be generally useful. Lactone 1g was readily prepared from the enzyme-mediated resolution of the racemic β-lactone that was derived from the achiral AAC reaction, see: a) S. G. Nelson, K. L. Spencer, J. Org. Chem. 2000, 65, 1227 1230; see also: b) N. Sakai, S. Ageishi, H. Isobe, Y. Hayashi, Y. Yamamoto, J. Chem. Soc. Perkin Trans. 1 2000, 71 77.
- [11] The absolute configuration of β-azido acids 4b-d was established by conversion to the corresponding N-Boc-protected amino esters 5b-d (1. CH₂N₂; 2. H₂, Boc₂O, Pd/C) and correlation of their optical rotation to those of authentic samples of known configuration. The configuration of azido acid 4e was established similarly by conversion to the corresponding N-Boc-protected amino acid (1. H₂, 10 % Pd/C; 2. Boc₂O, Et₃N). The configuration of the remaining β-azido acids (4a,f,g) was assigned by analogy to these determinations.
- [12] To verify that lactone ring opening was proceeding with rigorous inversion of configuration, the enantiomeric purities of azides 4a-c were determined by chiral-phase HPLC (Chiralcel OD-H column) of the methyl esters derived from 4a and 4b, and the benzyl ester derived from 4c.
- [13] S. Saito, H. Nakajima, M. Inaba, T. Moriwake, *Tetrahedron Lett.* 1989, 30, 837 – 838.
- [14] Soft nucleophiles afford predominantly S_N2 ring opening of β-lactones. For a review, see: A. Pommier, J.-M. Pons, Synthesis 1993, 441–459
- [15] a) T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron Lett. 1995, 36, 6373 6374; b) P. Wipf, T. C. Henninger, J. Org. Chem. 1997, 62, 1586 1587; c) S. C. Miller, T. S. Scanlan, J. Am. Chem. Soc. 1997, 119, 2301 2302
- [16] The enantiomeric purities of the β-sulfonamido esters 8b, c, g were determined by integrating representative signals in the ¹H NMR spectrum of the corresponding (S)-α-methoxyphenylacetamides. The diastereomeric (S)-α-methoxyphenylacetamides were prepared from 8 by sulfonamide deprotection (PhSH, K₂CO₃, DMF) followed by coupling the derived β-amino ester with (S)-α-methoxyphenylacetic acid (dicyclohexyl carbodiimide, 5 mol% 4-(dimethylamino)pyridine).
- [17] Attempts to introduce carbamate-protected nitrogen residues by addition of benzylcarbamate- or tert-butylcarbamate-derived anions afforded β-hydroxy imide products derived from predominant carbonyl addition.
- [18] Sulfonamide deprotection (PhSH, K_2CO_3 , DMF) of representative β -sulfonamido esters 8 proceeded in $80-90\,\%$ yield.